Рус Eng Cn Перевести страницу на:  
Please select your language to translate the article


You can just close the window to don't translate
Библиотека
ваш профиль

Вернуться к содержанию

Философия и культура
Правильная ссылка на статью:

Н.В. Клягин Новые коперники

Аннотация: В современной астрофизике господствует гипотеза ускоренного расширения Вселенной под влиянием «темной энергии». Эта концепция противоречит не только законам природы, но и правилам логического мышления. Философия в состоянии разрешить многочисленные противоречия этой гипотезы.


Ключевые слова:

акселерация расширения Вселенной, Великий Аттрактор, Вселенная, квазары, постоянная Хаббла, сверхновые звезды, сингулярность, суперструны, «темная энергии», «темное вещество», философия

Abstract: In modern astrophysics there is a prevailing hypothesis of accelerated expansion of the Universe under the influence of the ‘dark energy’. According to the author, this conception contradicts not only to the laws of nature but also to logic. However, philosophy can eventually solve numerous contradictions of the hypothesis.


Keywords:

acceleration of expansion of the Universe, Great Attractor, Universe, quasars, Hubble constant, supernova, singularity, ‘dark energy’, ‘dark matter’, philosophy


Если вы один из авторов этой статьи, вы можете открыть бесплатный доступ к этой статье для своих читателей. Вы должны зайти под своим логином и паролем, чтобы воспользоваться услугой. Перейдите по ссылке, чтобы зарегистрироваться или осуществить вход.

Библиография
1. Зельдович Я.Б. Теория крупномасштабной структуры Вселенной // Крупномасштабная структура Вселенной. М.: Мир, 1981. С. 452–465.
2. Караченцев И., Чернин А. Острова в океане темной энергии // В мире науки. 2006. № 11. С. 30–37.
3. Клягин Н.В. Современная научная картина мира: Учеб. пособие. М.: Университетская книга, Логос. 2007. 264 с.
4. Клягин Н.В. Философия и «проблема Ферма» // Философия и культура. 2008. № 1. С. 113–128.
5. Клягин Н.В. Суперколлайдеры и философия // Философия и культура. 2009 (в печати).
6. Кросс Л., Шеррер Р. Наступит ли конец космологии? // В мире науки. 2008. № С. 30–37. 6.
7. Хабер Г.Э., Кейн Г.Л. Обладает ли природа суперсимметрией? // В мире науки. 1986. № 8. С. 26–36.
8. Batuski D.J., Burns J.O. A possible 300 megaparsec filamen of clusters of galaxies in Perseus–Pegasus // The Astrophysical Journal. 1985. Vol. 299. № 1. Part. 1. P. 5–14.
9. Boughn S., Crittenden R. A correlation between the cosmic microwave background and large-scale structure in the Universe // Nature. 2004. Vol. 427. № 6969. Р. 45–47.
10. Diemand J. et al. Clumps and streams in the local dark matter distribution // Nature. 2008. Vol. 454. № 7205. Р. 735–738.
11. Dressler A., Faber S. M. New measurements of distances to spirals in the great attractor: further confirmation of the large-scale flow // The Astrophysical Journal. 1990. Vol. 354. № 2, part. 2. Letters. P. 45–48.
12. Dvali G. Neutrino probes of dark energy // Nature. 2004. Vol. 432. № 7017. Р. 567–568.
13. Glanz J. New Light on Fate of the Universe // Science. 1997. Vol. 278. № 5339. Р. 799–800.
14. Glanz J. Exploding Stars Point to a Universal Repulsive Force // Science. 1998. Vol. 279. № 5351. Р. 651–652.
15. Glanz J. Astronomers See a Cosmic Antigravity Force at Work // Science. 1998. Vol. 279. № 5355. Р. 1298–1299.
16. Glanz J. No Backing Off From the Accelerating Universe // Science. 1998. Vol. 282. № 5392. Р. 1249–1251.
17. Guzzo L. et al. A test of the nature of cosmic acceleration using galaxy redshift distortions // Nature. 2008. Vol. 451. № 7178. Р. 541–544.
18. Kraan-Korteweg R. C. et al. A nearby massive galaxy cluster behinde the Milky Way // Nature. 1996. Vol. 379. № 6565. Р. 519–521.
19. Krauss L.M. What is dark energy? // Nature. 2004. Vol. 431. № 7008. Р. 519–520.
20. Krauss L.M., Chaboyer B. Age Estimates of Globular Clusters in the Milky Way: Constraints on Cosmology // Science. 2003. Vol. 299. № 5603. Р. 65–69.
21. Livio M. Cosmic Explosions in an Accelerating Universe // Science. 1999. Vol. 286. № 5445. Р. 1689–1690.
22. Lynden-Bell D. et al. Spectroscopy and photometry of elliptical galaxies. V. Galaxy streaming toward the new supergalactic center // The Astrophysical Journal. 1988. Vol. 326. № 1, part. 1. P. 19–49.
23. Martinez V.J. Is the Universe Fractal? // Science. 1999. Vol. 284. № 5413. С. 445–446.
24. Massey R. et al. Dark matter maps reveal cosmic scaffolding // Nature. 2007. Vol. 445. № 7125. Р. 286–290.
25. Mayer L. et al. Early gas stripping as the origin of the darkest galaxies in the Universe // Nature. 2007. Vol. 445. № 7129. Р. 738–740.
26. Narlikar J. What if the big bang didn’t happen? // New scientist. 1991. Vol. 129. № 1758. Р. 48–51.
27. Narlikar J. Challenge for the big bang // New scientist. 1993. Vol. 138. № 1878. Р. 27–30.
28. Peebles P.J. Evolution of the cosmological constant // Nature. 1999. Vol. 398. № 6722. Р. 25–26.
29. Perimutter S. et al. Discovery of a supernova explosion at half the age of the Universe // Nature. 1998. Vol. 391. № 6662. Р. 51–54.
30. Peterson J. Universe in the balance // New scientist. 2000. Vol. 168. № 2269. Р. 26–29.
31. Riess A.G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant // The Astronomical Journal. 1998. Vol. 116. № 3. Р. 1009–1038.
32. Shectman S.A. The Las Campanas Redshift Survey // The Astrophysical Journal. 1996. Vol. 470. № 1, part. 1. P. 172–188.
33. Silk J. What makes nearby galactic clusters all move as one? // Nature. 1986. Vol. 322. № 6076. Р. 207–208.
34. Springel V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars // Nature. 2005. Vol. 435. № 7042. Р. 629–636.
35. Springel V. et al. The large-scale structure of the Universe // Nature. 2006. Vol. 440. № 7088. Р. 1137–1144.
36. Springel V. et al. Prospects for detecting supersymmetric dark matter in the Galactic halo // Nature. 2008. Vol. 456. № 7218. Р. 73–76.
37. Tully R.B. Alignment of clusters and galaxies on scales up to 0,1 c // The Astrophysical Journal. 1986. Vol. 303. № 1, part. 1. P. 25–38.
38. Waldrop M.M. In Search of Dark Matter // Science. 1986. Vol. 234. № 4773. Р. 152–154.
39. Waldrop M.M. Cosmologists Begin to Fill in the Blanks // Science. 1991. Vol. 251. № 4989. Р. 30–31.
40. Wang Y., Mukherjee P. Model-independent constraints on dark energy density from flux-averaging analysis of type Ia supernova data // The Astrophysical Journal. 2004. Vol. 606. № 2. Part. 1. P. 654–663.
41. Yahil A. Meet your cosmic neighbour // Nature. 1996. Vol. 379. № 6565. Р.489.
References
1. Zel'dovich Ya.B. Teoriya krupnomasshtabnoi struktury Vselennoi // Krupnomasshtabnaya struktura Vselennoi. M.: Mir, 1981. S. 452–465.
2. Karachentsev I., Chernin A. Ostrova v okeane temnoi energii // V mire nauki. 2006. № 11. S. 30–37.
3. Klyagin N.V. Sovremennaya nauchnaya kartina mira: Ucheb. posobie. M.: Universitetskaya kniga, Logos. 2007. 264 s.
4. Klyagin N.V. Filosofiya i «problema Ferma» // Filosofiya i kul'tura. 2008. № 1. S. 113–128.
5. Klyagin N.V. Superkollaidery i filosofiya // Filosofiya i kul'tura. 2009 (v pechati).
6. Kross L., Sherrer R. Nastupit li konets kosmologii? // V mire nauki. 2008. № S. 30–37. 6.
7. Khaber G.E., Kein G.L. Obladaet li priroda supersimmetriei? // V mire nauki. 1986. № 8. S. 26–36.
8. Batuski D.J., Burns J.O. A possible 300 megaparsec filamen of clusters of galaxies in Perseus–Pegasus // The Astrophysical Journal. 1985. Vol. 299. № 1. Part. 1. P. 5–14.
9. Boughn S., Crittenden R. A correlation between the cosmic microwave background and large-scale structure in the Universe // Nature. 2004. Vol. 427. № 6969. R. 45–47.
10. Diemand J. et al. Clumps and streams in the local dark matter distribution // Nature. 2008. Vol. 454. № 7205. R. 735–738.
11. Dressler A., Faber S. M. New measurements of distances to spirals in the great attractor: further confirmation of the large-scale flow // The Astrophysical Journal. 1990. Vol. 354. № 2, part. 2. Letters. P. 45–48.
12. Dvali G. Neutrino probes of dark energy // Nature. 2004. Vol. 432. № 7017. R. 567–568.
13. Glanz J. New Light on Fate of the Universe // Science. 1997. Vol. 278. № 5339. R. 799–800.
14. Glanz J. Exploding Stars Point to a Universal Repulsive Force // Science. 1998. Vol. 279. № 5351. R. 651–652.
15. Glanz J. Astronomers See a Cosmic Antigravity Force at Work // Science. 1998. Vol. 279. № 5355. R. 1298–1299.
16. Glanz J. No Backing Off From the Accelerating Universe // Science. 1998. Vol. 282. № 5392. R. 1249–1251.
17. Guzzo L. et al. A test of the nature of cosmic acceleration using galaxy redshift distortions // Nature. 2008. Vol. 451. № 7178. R. 541–544.
18. Kraan-Korteweg R. C. et al. A nearby massive galaxy cluster behinde the Milky Way // Nature. 1996. Vol. 379. № 6565. R. 519–521.
19. Krauss L.M. What is dark energy? // Nature. 2004. Vol. 431. № 7008. R. 519–520.
20. Krauss L.M., Chaboyer B. Age Estimates of Globular Clusters in the Milky Way: Constraints on Cosmology // Science. 2003. Vol. 299. № 5603. R. 65–69.
21. Livio M. Cosmic Explosions in an Accelerating Universe // Science. 1999. Vol. 286. № 5445. R. 1689–1690.
22. Lynden-Bell D. et al. Spectroscopy and photometry of elliptical galaxies. V. Galaxy streaming toward the new supergalactic center // The Astrophysical Journal. 1988. Vol. 326. № 1, part. 1. P. 19–49.
23. Martinez V.J. Is the Universe Fractal? // Science. 1999. Vol. 284. № 5413. S. 445–446.
24. Massey R. et al. Dark matter maps reveal cosmic scaffolding // Nature. 2007. Vol. 445. № 7125. R. 286–290.
25. Mayer L. et al. Early gas stripping as the origin of the darkest galaxies in the Universe // Nature. 2007. Vol. 445. № 7129. R. 738–740.
26. Narlikar J. What if the big bang didn’t happen? // New scientist. 1991. Vol. 129. № 1758. R. 48–51.
27. Narlikar J. Challenge for the big bang // New scientist. 1993. Vol. 138. № 1878. R. 27–30.
28. Peebles P.J. Evolution of the cosmological constant // Nature. 1999. Vol. 398. № 6722. R. 25–26.
29. Perimutter S. et al. Discovery of a supernova explosion at half the age of the Universe // Nature. 1998. Vol. 391. № 6662. R. 51–54.
30. Peterson J. Universe in the balance // New scientist. 2000. Vol. 168. № 2269. R. 26–29.
31. Riess A.G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant // The Astronomical Journal. 1998. Vol. 116. № 3. R. 1009–1038.
32. Shectman S.A. The Las Campanas Redshift Survey // The Astrophysical Journal. 1996. Vol. 470. № 1, part. 1. P. 172–188.
33. Silk J. What makes nearby galactic clusters all move as one? // Nature. 1986. Vol. 322. № 6076. R. 207–208.
34. Springel V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars // Nature. 2005. Vol. 435. № 7042. R. 629–636.
35. Springel V. et al. The large-scale structure of the Universe // Nature. 2006. Vol. 440. № 7088. R. 1137–1144.
36. Springel V. et al. Prospects for detecting supersymmetric dark matter in the Galactic halo // Nature. 2008. Vol. 456. № 7218. R. 73–76.
37. Tully R.B. Alignment of clusters and galaxies on scales up to 0,1 c // The Astrophysical Journal. 1986. Vol. 303. № 1, part. 1. P. 25–38.
38. Waldrop M.M. In Search of Dark Matter // Science. 1986. Vol. 234. № 4773. R. 152–154.
39. Waldrop M.M. Cosmologists Begin to Fill in the Blanks // Science. 1991. Vol. 251. № 4989. R. 30–31.
40. Wang Y., Mukherjee P. Model-independent constraints on dark energy density from flux-averaging analysis of type Ia supernova data // The Astrophysical Journal. 2004. Vol. 606. № 2. Part. 1. P. 654–663.
41. Yahil A. Meet your cosmic neighbour // Nature. 1996. Vol. 379. № 6565. R.489.